No.	技術名称	応募者	共同開発者	移動機構	新規 • 継続
1	非GPS環境対応型マルチコプターを用いた近接目 視点検支援技術	三信建材工業株式会社	(国)千葉大学,(株)自律制 御システム研究所,アイエ ムソフト(有)	飛行系	継
2	構造物点検ロボットシステム「SPIDER & Giraffe」		広島工業大学,(株)建設 技術研究所	飛行系	継
3	 損傷検知装置 	古河機械金属株式会社	(国研)産業技術総合研 究所	車両系	継
4	移動ロボットによる画像情報を用いた構造物の損 傷箇所記録技術	佐藤鉄工株式会社	(国法)富山大学	その他 クローラ台車	新
5	複眼式撮像装置を搭載した橋梁近接目視代替ロ ボットシステム		(株)イクシスリサーチ,(一財)首都高速道路技術センター	懸架系	継
6	マルチコプタを利用した橋梁点検システム(マルコ TM)	川田テクノロジーズ株式 会社	(株)エンルート,大日本コンサルタント(株),インフラ技術研究所,(独)産業技術総合研究所	飛行系	継
7	画像処理技術を用いた半自律飛行ロボットによる 橋梁点検支援技術	綜合警備保障株式会社	(株)横河ブリッジホール ディングス	飛行系	継

No.	技術名称	応募者	共同開発者	移動機構	新規 • 継続
8	橋梁の近接目視を代替する飛行ロボットシステム		(株)千代田コンサルタン ト,(一財)航空宇宙技術振 興財団,(株)リコー	飛行系	継
9	マルチコプターによる近接撮影と異状箇所の2次 元計測	夢想科学株式会社	(株)ニチギ,(株)plus-b	飛行系	新
10	橋梁点検用飛行ロボットシステム	1日 人名英格利金杯	自律制御システム研究所,(国研)産業技術総合研究所,(一財)首都高速道路技術センター	飛行系	新
11	ポール打音検査機		自律制御システム研究所,(国研)産業技術総合研究所,(一財)首都高速 道路技術センター	ポール系	新
12	近接目視・打音検査等を用いた飛行ロボットによる 点検システム	新日本非破壊検査株式 会社	名古屋大学大学院,九州 工業大学,福岡県工業技 術センター	飛行系	新
13	橋梁点検ロボットシステム『橋竜』による点検	株式会社帝国設計事務所	(株)カナモト	車両系	継

No.	技術名称	応募者	共同開発者	移動機構	新規継続
14	「橋梁点検カメラシステム視る・診る」による近接目 視、打音調査等援助・補完技術	ジビル調査設計株式会社	(有)インテス,福井大学	車両系	継
15	橋梁自動点検ロボットシステム	株式会社ミライト	_	懸架系	継
16	ワイヤ移動式汎用橋梁点検ロボット「ARANEUS」 による目視点検支援システム	, 八戸工業大学	(株)TTES,岡山大学大学院,京都産業大学,信州大学,名古屋工業大学大学院,神奈川大学,電気通信大学大学院(株)大和エンジニアリング,長大(株)	懸架系	新
17	橋梁下面の近接目視支援用簡易装置「診れるん です」	東北工業大学	O·T·テクノリサーチ(株)	懸架系	新
18	橋梁等構造物の点検ロボットカメラ		(株)日立産業制御ソ リューションズ	ポール系	継
19	音カメラ搭載橋梁点検用ロボットを活用した床版の 浮き・剥離の検出		(株)移動ロボット研究 所、(株)応用技術試験所, 東京エレクトロンデバイ ス(株)、(国法)名古屋大学	その他 吸着台車	新

国土交通省

No.	技術名称	応募者	共同開発者	移動機構	新規 - 継続
20	│ 赤外線調査ト─タルサポートシステム J システム │	西日本高速道路エンジ アリング四国株式会社	_	その他 赤外線	継
21	インフラ診断ロボットシステム(ALP)の研究開発	株式会社開発設計コンサルタント	学校法人法政大学,国 立大学法人岡山大 学・岡山大学大学院, ステラ技研株式会社	その他 吸着台車	新

非GPS環境対応型マルチコプターを用いた近接目視点検支援技術

~ 床版・桁の目視点検の現場検証 ~

[概要]

SLAM技術によりGPSを用いずに自律制御飛行可能なUAVを用い、搭載カメラにて撮影する近接目視点検支援技術。機体に搭載したレーザーレンジファインダーにより構造物と一定距離を保つことが可能であり、操作ミス等により機体が構造物に衝突しない安全性の向上と、常に一定した画角の画像を取得できる。

撮影画像は解析ソフトウェアを用いて写真上で異常個所をトレース することにより規模を測定し、図面と合成することで異常個所の位置 特定を行う。

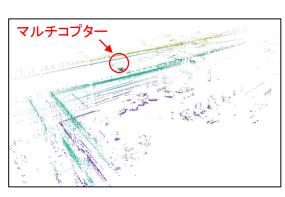
[特徴]

- ➤ GPSを用いない自律制御機能を有し、橋梁下などGPSが届かない環境でもホバリングや衝突回避を自動で行うことが可能。
- ▶ 操縦者は進行方向の指示のみ与え、完全マニュアル操縦のような卓越した操縦技術を要しない。
- ▶ 撮影画像と図面を合成することによりPC上で目視点検を行うことが可能。図面と合成した写真上で異常部をなぞることにより該当箇所が図面に反映され、作図と数量計算を同時に行える。
- ▶ ひび割れ延長・幅(0.1mm~)、欠損部などの面積計算が可能。

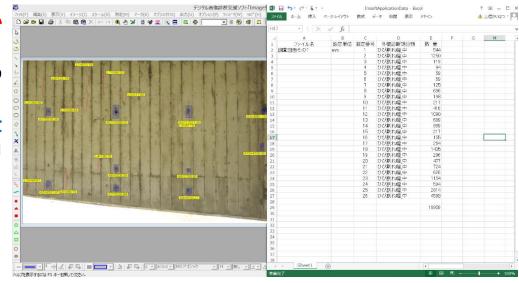
[前回からの改良点]

- ✓ 床版裏点検用、桁側面点検用それぞれ専用機を用意。
- ✓ 耐風性の向上のため、アーム長さ延長、プロペラの径を拡大した。

問い合わせ先: 三信建材工業株式会社 開発室 石田晃啓


応募者: 三信建材工業株式会社

共同開発者:(株)自律制御システム研究所、アイエムソフト(有)


[写真・イメージ]

マルチコプター(SLAM自律制御)

レーザーで読み取った周辺環境

調査図面と、自動計算された数量表(抜粋)

Tel: 0532-34-6066

Mail: ishida.t@sanshin-g.co.jp

小型無人へりまたはポール搭載カメラによる構造物点検および点検調書作成支援システム

~ 近接目視の「支援」技術の現場検証 ~

[概要]

全国約70万橋の橋梁について、5年に1回の近接目視点 検が義務付けられたなか、より一層の点検作業の効率化が 求められている。

そこで、本技術はUAV(無人航空機)をはじめとするロボット 技術に着目し、従来点検における近接目視の「支援」を目 的とした開発を行っている。

[特徴]

- ▶UAVは、橋梁上部や側面の撮影だけではなく、桁下面など 全方向の撮影が対応可能である。
- ▶ 遠隔操作での調査なので、足場や交通規制の必要がなく 点検コストの削減が期待できる。
- プポール型ロボットは、UAVでは撮影困難な狭隘部等の撮影・ 確認が可能であり、補完することができる。
- ▶ 点検ロボットによるスクリーニング作業を行うことで橋梁点検 作業の効率化、省力化が図れる。

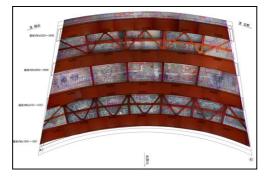
「前回からの改良点]

- ✓ 画像処理に係る期間を短縮し、コストメリットを向上させた。
- ✓ ひびわれ幅や損傷箇所の寸法を画像により判読させることが可能となり、定量的な情報を提供できる。

問い合わせ先: ルーチェサーチ株式会社 渡辺 豊

応募者: ルーチェサーチ株式会社

共同開発者: 広島工業大学・株式会社建設技術研究所


[写真・イメージ]

UAV無人航空機

ポール型ロボット

【橋梁点検・現地調査支援】

【交通渋滞調査】

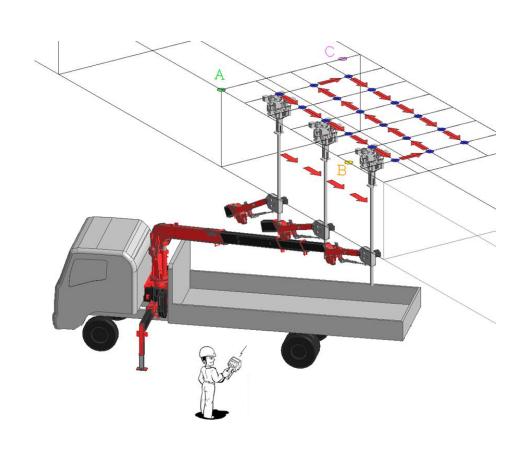
UAV無人航空機の活用事例

Tel: 082-209-0230 Mail: yutaka@luce-s.jp

損傷検知装置

~健全部の打音を基準として損傷部を検知する打音検査装置~

古河機械金属株式会社 応募者:


共同開発者: 産業技術総合研究所

「概要〕

本技術は、車載型クレーン「UNIC」と打音検査装置で構成される。 打音検査装置は、被験部への打撃力を計測し適正な入力を監視、 集音は環境ノイズを抑えるカバー構造により高S/N比で打音を採 り込む。打音分析法のAR-HMMは、打音による非定常な駆動の 影響を除去し、コンクリート内部の状況を反映した音響的特徴を 比較的安定に抽出できる。点検作業においては、自動点検モード により素人でも簡単に点検操作でき、その場で損傷判定できる。

「特徴〕

- ▶ 橋梁の3点(図の例: A.B.C)をティーチングすることで、現場の 橋梁に沿った方向(直交座標系)に移動操作できる。
- ▶ 自動点検モードにより一定間隔に自動送りおよび自動打音 点検ができ、等密度の打音検査ができる。(※)
- ▶ 損傷箇所については床版上にマーキングできる。また装置 先端部を交換すれば<mark>叩き落し</mark>もできる。(※)
- ▶マークを含む撮像画像から、その場で損傷図作成支援する データを作成できる。
- ▶ 点検作業から点検結果記録までワンマンオペレーションで実 施できる。(※)
- ※印の特徴は、昨年度の現場検証からの改良点

問い合わせ先: 古河機械金属株式会社 つくば総合開発センター Tel: 029-839-5105

Mail: f-yuasa@furukawakk.co.jp

画像情報と位置計測をリンクしたコンクリート構造物のひび割れ調書作成技術

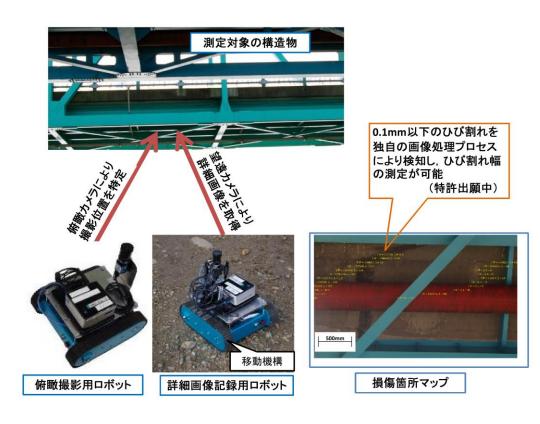
- 橋梁維持管理の現場検証

応募者: 佐藤鉄工株式会社

共同開発者: 富山大学

[概要]

本システムは構造物の損傷箇所の点検において、 近接目視による点検作業を代替するものである。


カメラを搭載した2台のロボットにより構造物の損傷 箇所を画像で記録し、損傷箇所の位置や大きさを表 す損傷箇所マップを作成できる。

作業者単独でも迅速な測定が行えることや、計測部 だけでも画像収集が可能であるため、人が携帯した り、UAVに搭載できる利点を有する。

[特徴]

- ▶ カメラを搭載した2台の移動ロボットを用いて、橋梁床版を自動撮影。
- ▶ 取得した画像を解析することで、ひび割れの位置と幅を 計測するシステム。
- ➤ 高さ10m程度の計測距離において、検出精度として 0.1mm以下の幅のひび割れの検出、計測可能。
- ▶ 取得したひび割れの情報を実際の橋梁床版画像に重ね合せ、ひび割れの位置と幅を確認できる損傷箇所マップを作成できる。

[写真・イメージ]

問い合わせ先:佐藤鉄工株式会社 企画室 可部谷

Tel: 076-462-9237

Mail: kabetani@satotekko.co.jp

複眼式撮像装置を搭載した橋梁近接目視代替ロボットシステム

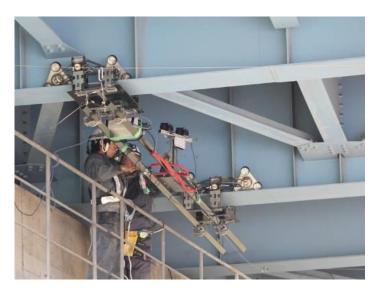
~ 橋梁近接目視点検の支援ができる システムの現場検証 ~

[概要]

複眼式撮像装置(ステレオカメラ)を搭載したロボットで鋼桁 下フランジを移動しながら鋼桁を撮影し、撮影画像を画像処理し 「橋梁点検要領等」における損傷を検出して近接目視を主体とする 点検の支援、および点検調書の作成を支援するシステム。

[特徴]

- → 鋼桁下フランジ懸垂型ロボットに搭載した複眼式撮像装置によって橋梁全体の桁下を移動しながら桁部の画像を撮影する。
- ▶ 撮像装置は障害物を避けて昇降し、損傷評価に必要な全て の情報を画像情報として得ることができ、近接目視の支援ができる。
- ▶ 撮影したステレオ画像を画像処理して損傷の寸法が計測でき、 点検および調書作成の費用・手間を削減する。


[前回からの改良点]

- ✓駆動系の改良により垂直補剛材など障害物の走破が可能となった
- ✓ステレオカメラを改良し小型化、軽量化を図った

応募者:富士フイルム株式会社

共同開発者:株式会社イクシスリサーチ

一般財団法人首都高速道路技術センター

ステレオ画像 撮影

平面推定

距離計測

橋梁点検の新しい可能性を提示するマルチコプタを用いた点検システム:マルコ™

~ システムの実現性実証に関する現場検証

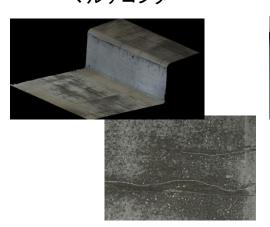
応募者: 川田テクノロジーズ(株) 技術研究所 共同開発者: (株)エンルート、大日本コンサルタント(株)、

産業技術総合研究所

[写真・イメージ]

[概要]

マルコ™はNEDOの委託(H26~H29)を受けて開発中のマルチコプタを利用した橋梁点検システムである。


橋梁下面(床版下面、桁外面、下部工外面、支承部) の近接目視点検の支援を目的としており、自律制御技術 や橋梁への脱着技術、点検データ処理技術の実現を通し て運用性の高いシステムを実用化することを目指している。

[特徴]

- ▶地方公共団体の管理する道路橋を対象。
- ▶2種類のシステムを準備。
 - 高精細画像取得タイプ:床版、コンクリート橋を対象 とし、短時間で高精細な画像を網羅的に取得する。
 - 橋梁脱着タイプ: 鋼橋を対象とし、鋼桁を把持することで安定して点検画像を取得する。
- ▶交通規制を伴わずに橋上から少人数で運用できる。
- ▶有線給電式により十分な点検時間を確保。
- ➤安全索により飛行体の落下等による危険性を低減。

高精細画像取得用 マルチコプタ

橋梁脱着型 マルチコプタ

得られた画像の一例

問い合わせ先: 川田テクノロジーズ(株)技術研究所 金平 徳之

Tel: 028-687-2217

Mail: norivuki.kanehira@kawada.co.ip

画像処理技術を用いた半自律飛行ロボットによる橋梁点検支援技術

~ 橋梁点検の効率化に役立つ技術の現場検証 ~

応募者: 綜合警備保障株式会社

共同開発者: 株式会社横河ブリッジホールディングス

[概要]

橋梁の老朽化に伴い、飛行ロボットをはじめ橋梁点検の効率化に役立つ技術の実用化が求められている。

飛行ロボットには、足場を設置せずに橋梁に接近できるという特徴があるが、橋梁付近ではGPS電波を受信できないため、位置認識機能を使用できないという課題もある。

そこで、GPSに依存しない位置認識技術を用いた半自律飛行により、 操縦者の負担を軽減できる橋梁点検用飛行ロボットの実現を目指す。

現場検証に使用する飛行ロボット

[昨年度現場検証からの改良点]

昨年度の現場検証を踏まえ、GPS電波に依存しない位置認識技術を実装し、操縦者の操縦技術に 依存しない半自律飛行技術を実現する。

問い合わせ先: 綜合警備保障株式会社 開発企画部 Tel: 03-3402-7606 Mail: tsuchiya-t@alsok.co.jp

橋梁の近接目視を代替する飛行ロボットシステム

~重要部位の近接目視性能の現場検証~

応募者: (国)東北大学情報科学研究科

共同開発者:(株)千代田コンサルタント、(一財)航空宇宙技術振興財団、

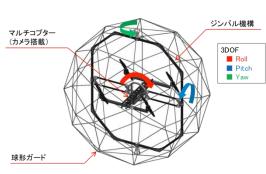
(株)リコー

[概要]

足場や橋梁点検車なしに、損傷が生じやすい床版・桁・対傾構・横構・支承部などに安全に接近し、近接映像を取得できる飛行ロボット(ドローン)。

特徴は、球形ガードの全周囲保護による安全性、最高風速 10m/sまで飛行を維持できる耐風性、幅0.1mmのクラックを撮影できる搭載カメラなど。マニュアル操縦式。

[特徴]


- ▶ 飛行して近接目視を行うため、原則として点検用の足場の仮設や橋梁点検車が不要
- ▶ 球形ガードによりドローン本体を全周囲から保護しているため、主桁や横構、対傾構の間を通って安全に床版や支承部に接近できる
- ▶ 実橋梁での試験により、最高風速10m/sまで飛行を維持できること、国交省橋梁定期点検要領に定められる幅0.1mmのクラックをフルHD解像度で撮影できることを確認済み
- → 飛行中に撮影する映像は地上でリアルタイムにモニタリングできるため、点検漏れが発生しにくい

[前回からの改良点]

- ✓ 推力を150%向上したことにより耐風性が向上
- ✓ 現場の意見を反映し映像リアルタイムモニタ機能を搭載

[写真・イメージ]

(左)下横構を通りぬけ床版の接写を行うドローン。 ガードの直径は統計調査で国内橋梁への進入に最適化した95cm。 (右)構造物と接触してもガードのみが回転して衝撃を吸収するため、 ドローン本体は安定して飛行を継続できる

(左)主桁の高力ボルトを約50cmの距離で接写した例 (右)支承部を約1mの距離で接写した例

問い合わせ先:(国)東北大学 情報科学研究科 田所研究室 准教授 大野/助教 岡田

Tel: 022-795-7025

Mail:{ohno,okada}@rm.is.tohoku.ac.jp

マルチコプターによる橋梁検査の損傷報告書サポートシステム

~ 橋梁外観検査の現場検証 ~

[概要]

橋梁検査において、リスク・コスト・工期の削減を目的にマルチコプターによる近接外観目視検査を支援するシステムを構築します。

今回の取組みは、検査員が損傷度合いの判定を行うにあたり、マルチコプターにて採取された高精度な画像データと解析ソフトにより、報告書作成の支援を行うことを目的としています。

将来的に、すべての解析システムを統合しICT化することを目指します。

[特徴]

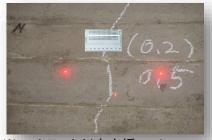
- ▶ 上部ジンバル専用機によって、広い視界 (PAN: 360° TILT: 水平~仰 角90度) を確保します。
- ▶ 一眼レフカメラ搭載の超近接撮影仕様で、さらに遠隔ズームで詳細な画像取得が可能です。(距離1mズーム最大で1ピクセル0.079mm)
- ➤ 高精度3Dモデリングと各損傷個所の詳細データのタグ付けにより詳細な位置情報を把握できます。※1
- ➤ 任意のポイントに座標値を入力することによりCAD化することが可能になり、検査報告書作成において図面作成の支援ができます。
- ▶ 0.1mmレベルのクラック判定を支援するソフトウェア(開発中)。※2
- ▶ 取得画像より長さや面積を割出すことが可能な寸法計測ソフト。※3
- ▶ 被写体とカメラの平行をサポートする制御システム搭載により、あおり補 正等による画像解析の精度低下を抑制します。
- ▶ カメラの性能をフルに発揮できるような専用ジンバルを設計し、プロのカメラマン監修で高精度画像取得を目指します。

応募者:夢想科学株式会社(ドローン開発)

共同開発者:株式会社ニチギ(調査会社)・Plus-b(写真家)

[写真・イメージ]

※1 3Dモデル構築



※1 3Dモデル損傷部タグ付け

※1 タグ付けされた個所の詳細画像

※2 クラック判定支援ソフト

※3 寸法計測ソフト(2D·長さ/面積)

問い合わせ先:夢想科学株式会社 泉

Tel: 097-574-5428

Mail: izumi@anaheim-laboratory.com

打音点検用飛行ロボットシステム

~飛行ロボットを活用した打音点検の現場検証~

応募者: 日本電気株式会社

共同開発者:自律制御システム研究所、産業技術総合研究所、

首都高速道路技術センター

[概要]

足場を必要とする点検個所を足場なしで飛行ロボットを利用して近接目視点検支援、打音点検支援をするシステムである。ロボット操作員と点検員により運用する。

今回の現場検証では飛行ロボットをコンクリート構造物面に沿わせて近接目視点検を支援するための画像を収集する。その自律制御飛行と、高精細画像データ取得の要素技術の検証をする。さらにコンクリート構造物壁面に対して飛行ロボットに搭載した打検機を押し当て、打音した際の清音・濁音の判断が可能な音声データを点検員に伝送をする要素技術の検証を実施する。

[写真・イメージ]

[特徴]

- ▶ 10m程度の高さの打音点検を、高所作業車といった足場を利用せずに飛行ロボットを利用して打音点検をする。
- ▶ 打音点検個所を探索するため、壁面に沿って一定の距離をあけて自律的飛行制御をしつつ、高精細画像データを収集する。
- ▶ 打音点検個所に自律的な飛行制御で壁面へ打検機を押し当てることでロボット操作員の操作を容易にする。
- ▶ 打音した音声データを清音・濁音の判断ができる品質で点検員に伝送し聴音させる。

打音点検用飛行ロボットを使った橋梁点検

問い合わせ先: 日本電気株式会社 電波・誘導事業部 誘導・観測システム部 Tel: 042(333)1148 Mail: window@geo.fc.nec.co.jp

ポール型打音検査機

~ポール型打検機を利用した打音点検の現場検証~

応募者: 日本電気株式会社

共同開発者:自律制御システム研究所、産業技術総合研究所、

首都高速道路技術センター

[概要]

手の届かない高さの打音点検個所を足場なしでポール型打音検査機を利用して打音点検をするシステムである。

今回の現場検証では点検員が打音点検すべき個所を判断し、その箇所にポール型 打音検査機のセンサヘッド部を押し当て、打音手点検を実施する。打音した際の清 音・濁音の判断が可能な音声データを点検員に伝送をし、打音点検の運用性の検 証を実施する。

[特徴]

- ▶ 5m程度の高さの打音点検を、高所作業車といった足場を利用せずにポール型打音検査機を利用して打音点検をする。
- ▶ センサヘッド部が打音した際の音声データを清音・濁音の判断ができる品質で点検員に 伝送し聴音させる。

[写真・イメージ]

問い合わせ先: 日本電気株式会社 電波・誘導事業部 誘導・観測システム部 Tel: 042(333)1148 Mail: window@geo.fc.nec.co.jp

近接目視・打音検査等を用いた飛行ロボットによる点検システム

~ コンクリート床版への

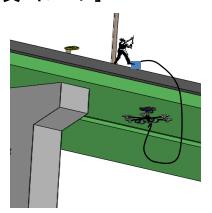
ロボット接触状態における点検の現場検証 ~

[概要]

橋梁やトンネルなどのインフラ構造物には、人が簡単に 近づけない個所も多く、従来の点検では特殊な車両や機 材を使用するため、コスト面や作業員の安全確保など大 きな課題を抱えていた。そこで、ドローン技術を活用して接 近し、近接目視や打音検査などの点検を可能とする点検 ロボットシステムを開発、効率的で低コストのインフラ点検 システムを供給する。

[特徴]

- ▶ドローンの上部に搭載した駆動車輪をコンクリート壁面に押し付け、接触移動による点検。
- ▶接触点検により、安定した連続データを取得。
- 複数台のカメラによる近接目視を実施し、コンクリートのひ割れを効率的に検出可能。
- ▶回転式打音機構により連続打音検査を高速で実施。
- ▶データの自動解析により、点検調書作成を支援。

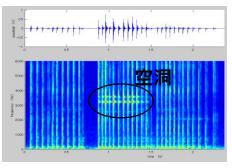

応 募 者 : 新日本非破壊検査株式会社

共同開発者: 名古屋大学大学院

九州工業大学大学院

福岡県工業技術センター機械電子研究所

[写真・イメージ]


橋梁点検イメージ

床版の点検

点検ロボット

打音周波数解析結果

問い合わせ先: 新日本非破壊検査株式会社 メカトロニクス部 担当 和田 Tel: 093-581-1256

Mail: h-wada@shk-k.co.ip

橋梁点検ロボットシステム『橋竜』による点検

~ 車載型ロボットアーム、3DCG、 カメラを利用した点検 の現場検証

[写真・イメージ]

応募者: 株式会社帝国設計事務所 共同開発者:株式会社カナモト

[概要]

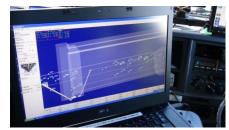
従来型の点検員がバケットにのる橋梁点検車では構造が複雑なトラス橋やアーチ橋への適用性が低く、また点検位置や写真を点検員が現場で野帳に記録し事務所で整理する方式で行われてきたが調書作成等に多くの時間を要するなど作業の効率化が求められていた。

そこで本システムでは

- 1)ロボットアームの先端にカメラを設置し、操作室内の3DCGとモニターによる遠隔操作にて**トラス橋等**においても安全に橋梁上部エ・下部工の近接目視点検を可能とした。
- 2) 点検画像データや位置情報はその場で**電子データ化**され、損傷座標位 置情報は経年変化を的確かつ容易に把握することが可能である。
- 3) 本データは写真帳整理、変状展開図作成作業の効率化のための支援ソフトにより、半自動で整理可能である。

[特徴]

- 1) 本システムでは雲台に可視光レーザーを搭載しているため、市販の画像解析ソフトによりコンクリートのひび割れ幅、鋼材の亀裂幅や 長さの計測も可能である。
- 2) 本システムは油圧式の鋼製アームで構成されているためアーム先端 の搭載重量に余裕があり、点検用カメラを装着した雲台と**非破壊検 査装置等の搭載も可能**である。


橋梁下面点検

アーム先端カメラ

点検システムの前面

操作室内3DCG

操作室内モニター画像

点検システムの背面

問い合わせ先: 株式会社帝国設計事務所 技術開発部若山

Tel:011-753-4768

Mail:wakayama@kk-teikoku.jp

「橋梁点検カメラシステム視る・診る」による近接目視、打音調査等援助・補完技術

~ 橋梁点検ロボット技術の現場検証 ~

[概要]

本技術は、橋梁点検における肉眼での近接目視点検の支援・補完技術である。本システムは、橋面上に幅0.95m長さ2.7mのコンパクトな作業車を歩道又は、路肩の一部に設置し、点検用のアームを橋梁桁下に挿入させそのアームに搭載したハイビジョンビデオカメラを用いて桁下面を近接撮影し、橋面上のモニターでライブ映像及び、画像(動画・静止画)を取得し点検を行うシステムである。

[特徴]

- ▶ 高精細なライブ画像を確認しながら正確な点検作業が可能。
- ▶ ハイビジョンビデオカメラによる点検部位の近接撮影で細かく損傷 の点検が可能。(例:幅0.1mmのひび割れ)
- ▶ システム操作及び、点検作業を橋面上の操作台車より実施する事で、安全で落ち着いた環境での点検作業が可能
- ▶ 点検結果は動画・静止画で取得が可能。点検結果の再検証 や点検漏れ・誤判定の防止などに効果的。
- ▶ 損傷形状の測定機能として、スケール宛がい法・レーザーポインター照射法・2D写真計測法・3D写真計測法が可能。
- ▶ 打診専用台車を用いて、打診調査が可能。また、赤外線サーモグラフィを搭載し温度検査による浮き部の抽出可能。

応募者: ジビル調査設計株式会社 共同開発者: 有限会社インテス・ 福井大学

[写真・イメージ]

カメラシステム仕様				
操作台車	カメラ関係	アーム関係		
自走式 ゴムクローラー台車	ハイビジョン ビデオカメラ	水平アーム長 7.2m		
車両幅 0.95m	記録画素数 2,000万画素	鉛直ロッド長 9.2m		
車両長さ 2.70m	光学12倍ズーム	_		

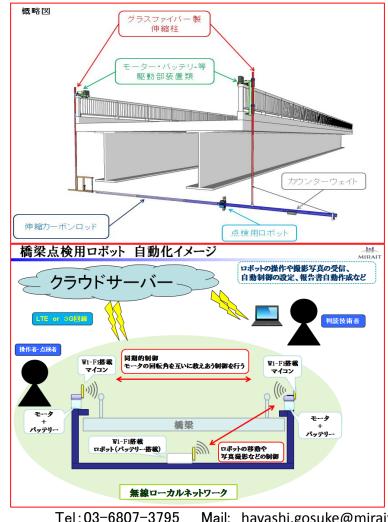
問い合わせ先 : ジビル調査設計株式会社 担当 南出 Tel: 0776-23-7155 Mail: minamide@zivil.co.jp

橋梁自動点検用ロボットシステム

~橋梁点検の近接目視点検の支援ができるシステム~

応募者: 株式会社ミライト

[概要]


全幅が10m程度の小規模橋梁を対象とし近接目視点検の 支援を行う。

軽量なカーボン製ロット上をカメラを搭載したロボットが移動し 撮影した画像データをクラウドサーバーに送信・保存する。

[特徴]

- 軽量で、最小2名で設置・撤収を含めた点検作業が可能。
- ・歩道もしくは路側帯の一部、最小のスペースで点検可能。
- ・橋上では高欄の一部のみを利用する為規制は設置時 撤収時のみかつ路側帯の一部のみとなる。
- ・バッテリーを搭載、Wi-Fiと各種センサーを活用した自律制御が可能であり自動で点検ができる。
- ・クラウドサーバーにデータを送信・保存する為遠隔地で 判読が可能で、高度な技術者が遠方にいても点検可能。
- ・足場等の大規模長期間の仮設が不要となる。

[写真・イメージ]

問い合わせ先:株式会社ミライト

次世代モバイルビジネス創造本部ファシリティ&デザイン室 林・佐々木

Mail: hayashi.gosuke@mirait.co.jp sasaki.rei@mirait.co.jp

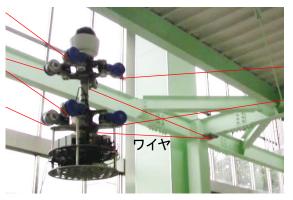
ワイヤー移動式汎用橋梁点検ロボット「ARANEUS」による目視点検支援システム

~ 橋梁目視点検支援システムの現場検証

[概要]

近年,橋梁の長寿命化のために点検・検査業務の効率化・ 省力化・経済性向上に貢献できる点検ロボットの開発が期待 されている.橋梁の下には,河川だけではなく車道が存在して おり,第三者被害を防止するためにも,ロボットの「落下」は許 されない. そこで,本研究では,ワイヤー移動式の橋梁点検ロ ボットを提案する.本方式を適用することで大きなペイロードを 確保し,高精度なセンサ・カメラを搭載することを可能にしてい る.

既に、平成27年9月12日に青森県八戸市の新井田橋において運用試験を実施し、本システムの有効性を確認している。


[特徴]

- ▶最低人数2名程度で検査業務の実施が可能
- ▶ 大ペイロードを活かし重いセンサ・カメラ(高精度)を搭載可能
- ▶8本のワイヤで橋梁に固定しているため、電源を喪失しても落 下せず、フェイルセーフを確保
- ▶ロボットアームを取り付けることによって打音・洗浄・簡易修繕等多様な検査業務に展開可能

~ 応募者∶八戸工業大学

共同開発者:株式会社TTES,株式会社長大

[写真・イメージ]

点検状況

7m程度離れた場所からの撮影画像

ARANEUS

橋梁下面の近接目視支援用簡易装置 「診れるんです」

~ 2名が普通車で現場に行き、少ない通行規制 の下、容易に橋梁下面を診る技術の現場検証 ~

応募者: 小出英夫 (東北工業大学 工学部 都市マネジメント学科 教授) 共同開発者: 鳥海廣史 (O・T・テクノリサーチ株式会社 代表取締役社長) 藤田豊己 (東北工業大学工学部知能エレクトロニクス学科 教授) 山田真幸 (東北工業大学 工学部 都市マネジメント学科 准教授)

[概要]

床版下面(総幅員約13m以下)を対象に、複数台の各カメラのリアルタイム映像を確認しながら静止画像を同時取得し、点検支援を効率的に実行する。

最長12mの両端ヒンジ棒部材を高欄部より吊上げ、棒部材に固定した最大7台のカメラを用いて、橋軸直角方向のすべての床版下面を橋上のタブレットから点検・撮影・保存する。カメラのズーム、パン・チルト操作、撮影はカメラ毎でも同時一括でも可能。

技術者が最低2名で普通乗用車に当該装置一式を積んで現場に向かうことで点検可能となる。

[特徴]

- > 装置一式を普通車に積み込み可能(棒部材は2mごとに分解)
- > 2名の技術者ですべての作業が可能(運搬・設置・点検・撤収)
- ▶ 棒部材は50cm刻みで長さ調整可能(あらゆる幅員に対応)
- 各カメラ位置は固定により、写真撮影位置は明確。タブレット内での保存フォルダの仕分けにより点検調書への取込み等も容易
- ▶ 床版下面の任意部位での近接目視支援(ズーム撮影)も可能
- ▶ 仕組が単純で不具合が少なく、取扱い・メンテナンスも容易

「写真・イメージ]

橋上からの装置吊上げ (専用ウィンチ使用時)

* 吊上げ時、ウィン チ等を用いず、人 カのみで吊上げる ことも可能。

橋上からのタブレット操作 (各カメラ操作・撮影・保存) Wi-Fi利用

- 小型電源装置

棒部材10mの状況例 (点検用カメラA、B を

計4台設置)

← イメージ図

棒部材12mの使用例(2台の点検用カメラAを使用

← 点検用カメラA装置全体の「状況確認用」にも利用可(横方向に設置)

点検用カメラB → 高倍率光学式ズーム機能

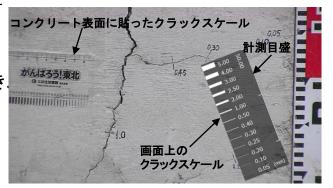
問い合わせ先: 東北工業大学工学部都市マネジメント学科 小出英夫

Tel: 022-305-3506

Mail: koide@tohtech.ac.jp

橋梁等構造物の点検ロボットカメラ

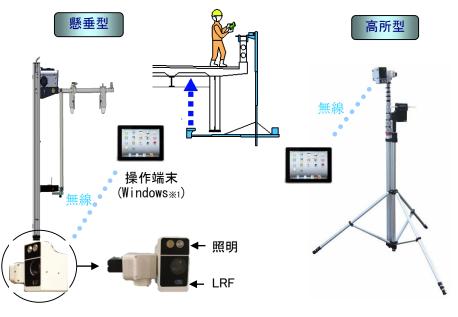
~ 橋梁損傷の定量把握技術の現場検証 ~


[概要]

橋桁の下面や支承部など近接目視が困難な箇所に対して、ポールユニットを用いて視準可能な高さにカメラを据付け、点検、測定、映像記録採取を行う装置です。

カメラは、タブレット端末から無線通信により遠隔操作します。 ポールユニットは、懸垂型と高所型があり、懸垂型は、高欄にポールユニット基部を設置して、下方(最大4.5m)に伸ばすことができます。高所型は地上に架台を設置して、上方(最大10.5m)にカメラを伸ばすことができます。

[特徴]


- ▶ 橋面から点検調査が可能、作業中の転落事故などの危険性を低減
- > 点検時の交通規制を低減
- ▶ 光学倍率30倍、映像補正(コントラスト補正、霧除去)、手振れ補正 により「見る」を強力にサポート
- ▶ ポールユニットは伸縮自在で容易に設置
- ▶ 指で操作するだけの簡単操作端末
- ▶ 動画を撮影しながら静止画撮影
- ▶ レーザー測距計による距離計測に基づき 計測対象面にクラックスケールの表示

操作端末画面に表示されたクラックスケールおよび計測目盛

応募者:三井住友建設株式会社

共同開発者:株式会社 日立産業制御ソリューションズ

支承部の点検

問い合わせ先: 三井住友建設(株) 土木リニューアル推進室

Tel: 03-4582-3053

Mail: dobokutoiawase@smcon.co.ip

音カメラ搭載橋梁点検用ロボットを活用した床版の浮き・剥離の検出

~ 指向性音カメラ搭載ロボットの現場検証 ~

「概要〕

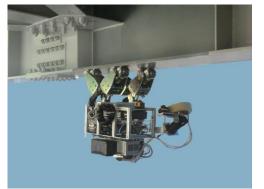
点検業務が困難な箇所については遠望目視となるため、高精度な点検を実施することが難しいなどの課題があった。

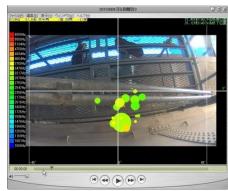
本研究開発では、音の発生箇所をビジュアル化する音カメラ装置と磁力式移動ロボットを組み合わせた点検ロボットを開発し、目視点検では把握困難な橋梁の異音を、環境の影響を受けない効率的な検知システムの開発を目指している。

[特徴]

- ▶ 点検ロボットに搭載する音カメラに指向性機能を持たせ、橋梁背面の反射音を低減
- ▶ 指向性音カメラの高画質な動画ならびに音声データを同時に 伝送可能
- ▶ コンクリート部材等を加振し、音響特性の相違から非健全部 と健全部を診断
- ▶ 音カメラ画像と独立した高精細画像記録機能を付加し、静止状態で対象部位のひび割れ等を検出
- ▶ 点検者が、橋梁点検箇所から離れた位置で安全確実にリアルタイムな診断が可能

応募者: 株式会社 熊谷組


共同開発者:(株)移動ロボット研究所・(株)応用技術試験所


東京エレクトロンデバイス(株)・名古屋大学

[写真・イメージ]

指向性音カメラ搭載移動ロボットの外観イメージ

名古屋大実験施設(N2U-BRIDGE)での走行実験と指向性音カメラによる計測結果

問い合わせ先: (株)熊谷組技術研究所 永田 尚人

Tel: 03-3235-8617

Mail:hnagata@ku.kumagaigumi.co.jp

赤外線調査トータルサポートシステム 」システム

西日本高速道路エンジニアリング四国株式会社 赤外線調査支援システムの現場検証 応募者:

「概要〕

橋梁等のコンクリート構造物において、鉄筋腐食に伴い 発生するはく離や浮き(コンクリート内部のはく離ひび割れ) を、遠望非接触にて赤外線法により検出する技術である。 鉄筋の腐食に伴い発生するコンクリート表面に平行な鉄 筋に沿ったはく離ひび割れや、それに連続する斜め方向に 進展して表面に達するひび割れを検出できる技術である。

[特徴]

- ▶ 遠望非接触にて、はく離、浮きなどのコンクリート 内部の損傷を検出。
- ▶ 高精度赤外線カメラを用いることにより、既存技 術と比較して、調査精度、調査効率が向上。
- ▶ 熱環境測定装置EM(S)を用いることにより、安定 した調査品質を確保。
- ▶ リアルタイムで熱画像の画像解析を行うことにより、 損傷状態と危険度を定量的に推定可能。判定 の個人差を排除し、損傷部の見逃しを防止。
- ▶損傷程度の3段階分類により、打音点検による 確認箇所を絞り込む。

Jシステムにおける調査

赤外線調査実施状況

高性能カメラ採用による 精度向上

> 調査環境定量評価に よる品質保証

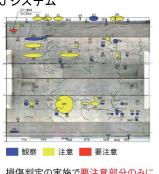
熱環境測定装置 (事前準備) 模擬異常部の確認で調査可能な時間帯を把握

撮影・解析ソフトウェア ◇●●こ○○キャ 危恐恐症 御展開 服 判定例)

リアルタイム 判定による調査支援

損傷程度を3段階に判定可能。 損傷のひどい筒所を重点的に 損傷の程度不明のため 点検することで効率向上

従来技術


推定可能

全箇所の打意点機が必要

損傷部の種類と危険度を

報告書例

Jシステム

貴傷判定の実施で要注意部分のみに

問い合わせ先: 西日本高速道路エンジニアリング四国㈱ 土木技術課 林

Tel: 087-834-2419

Mail:shogo.hayashi@w-e-shikoku.co.jp

インフラ診断ロボットシステム(ALP)の研究開発

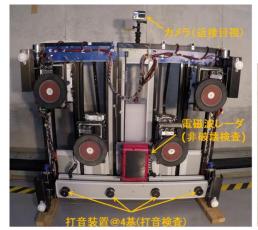
~ コンクリート製橋脚・橋台の現場検証

「概要〕

ALPは、コンクリート壁面に真空吸着しながら縦・横方向に自 走して、高所等難条件下でのインフラ維持管理のための点検を 支援するロボットシステムである。

搭載する計測機器とソフトウェアによる解析により、近接目視・ 打音検査・非破壊検査とその評価が可能である。検査データは、 位置座標を含め客観的定量データであり、熟練技術者でなくと も現地で容易に評価ができるものとなる。

[特徴]


- ▶ 高精細デジタルカメラを用いたひび割れ抽出および打音装置を 用いたうきの自動判定により、「橋梁定期点検要領」における橋 脚・橋台の点検項目について点検調書の作成支援が行える。
- ▶ 5~10mm程度の凹凸や表層劣化が生じているコンクリート面で も走行可能であり、約0.2m/分で移動しながら点検することがで きる。
- 真空度センサー等の吸着確認安全装置ならびに横移動による 障害物回避行動が可能である。

芯 募 者 : 株式会社開発設計コンサルタント


共同開発者: 学校法人法政大学•国立大学法人岡山大学

ステラ技研株式会社

[写真・イメージ]

ALP概要図

高精細デジタルカメラとコンクリート壁面(3Dモデル)

打音装置と反射音評価システム

問い合わせ先:株式会社開発設計コンサルタント 設備保全技術開発センター Tel:0467-85-0816 Mail:nojima@jpde.co.jp